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Summary: Finite-fault source inversions reveal the spatial complexity of earthquake slip or pre-

stress distribution over the fault surface. The basic assumption of this study is that a stochastic

model can reproduce the variability in amplitude and the long-range correlation of the spatial slip

distribution. In this paper, we compute the stochastic model for the source models of four

earthquakes: the 1979 Imperial Valley, the 1989 Loma Prieta, the 1994 Northridge and 1995

Hyogo-ken Nanbu (Kobe). For each earthquake (except Imperial Valley), we consider both the dip

and strike slip distributions.  In each case, we use a one-dimensional stochastic model.  For the four

earthquakes, we show that the average power-spectra of the raw, i.e., non-interpolated, data follow a

power law behavior with scaling exponents that range from 0.78 to 1.71. For the four earthquakes,

we have found that non-Gaussian probability law, i.e., the Lévy law, is better suited to reproduce the

main features of the spatial variability embedded in the slip distribution, including the presence and

frequency of large fluctuations. Since asperity are usually defined as regions with large slip values

on the fault, the stochastic model will allow predicting and modeling the spatial distribution of the

asperities over the fault surface. The values of the Lévy parameters differ from one earthquake to the

other. Assuming an isotropic spatial distribution of heterogeneity for the dip and the strike slip of he

Northridge earthquake, we also compute a two-dimensional stochastic model. The main conclusions

reached in the one-dimensional analysis remain appropriate for the two-dimensional model. The

results obtained for the four earthquakes suggest that some features of the slip spatial complexity

are universal and can be modeled accordingly. If this is proven correct, this will imply that the spatial

variability and the long-range correlation of the slip or pre-stress spatial distribution can be

described with the help of five parameters: a scaling exponent controlling the spatial correlation and

the four parameters of the Lévy distribution constraining the spatial variability.

Key words: Fault slip, Inhomogeneous media, Statistical methods, Stress distribution
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I INTRODUCTION

The source of complexity in earthquakes is not well understood and still debated (Carlson

and Langer, 1989; Rice, 1993; and Madariaga and Cochard, 1994).  Like other complex systems

observed in nature, the expectation that the complexity of earthquakes may be due to some

underlying scaling law comes from observations. The foremost observation in seismology is the

Gutenberg-Richter statistics for the number and magnitude (energy release) of earthquakes

(Gutenberg and Richter, 1942).  Taken globally or locally, the logarithm of the number of

earthquakes is related to the magnitude through a power law over 18 orders of magnitude in the size

of an earthquake.  A less well known, but critical, observation is the roughness of topography of

sliding surfaces (Figure 4 in Power et al., 1987). Their basic result shows that over 11 orders of

magnitude in fault surface wavelength—that is from field data to the laboratory—the power

spectrum density of roughness (geometrical complexity) appears to follow a power law.  This

suggests that asperities and barrier are distributed —over a large range of scale— on the fault

surface.

Following early observations of complexity in earthquakes (Wyss and Brune, 1967; Das

and Aki, 1977; Aki, 1979; Day, 1982; and Boatwright, 1984), the complex behavior of earthquakes

has been reported in almost every article based on inverting near-source data for the slip or pre-

stress distribution of the causative fault (e.g. Hartzell and Heaton, 1986; Beroza and Spudich, 1988;

Bouchon, 1997; and Bouchon et al., 1998a, b; Sekiguchi et al., 2000; Zeng and Chen, 2001;

Mikumo et al., 2003; and Zhang et al., 2003).  In a study of spatial heterogeneity and friction in the

crust, Rivera and Kanamori (2002) conclude that “heterogeneity of stress field, and friction in the

crust seems to be the essential feature of the crust, and studies on earthquake rupture dynamics must

take these heterogeneities into consideration.” As elsewhere in physical sciences, efforts to

understand complex spatial variability were based on a statistical characterization approach (Boore

and Joyner, 1978; Andrews 1980; Von Seggern, 1981; Lomnitz-Adler and Lemus-Diaz, 1989;

Gusev 1992; Herrero and Bernard, 1994; and Oglesby and Day, 2003). Most of the models

discussed in the literature are either phenomenological in nature or simply a guess.  While these
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models may reproduce some qualitative features of the “heterogeneous” variability observed in slip

or pre-stress distribution, the model parameters are neither fixed nor validated through a comparison

with the inverted slip data.  Somerville et al., (1999) and Mai and Beroza (2002) went a step further.

Using available source models, they validated and computed the parameters of the Von Karman

function that they used to model the two-points statistics of the slip distributions. Guatteri et al.

(2003), computed kinematic, hybrid and dynamic scenarios of ruptures based on synthetic random

pre-stress spatial distribution modeled according to Mai and Beroza (2002). A major finding of this

study was that the inclusion of variability in the source parameters is fundamental to simulate

realistic ground motion time histories.  In a paper discussing the dynamic inversion and modeling of

the 1992 Landers earthquake, Peyrat et al. (2001) concluded that rupture propagation is “critically

determined” by the pre-stress spatial distribution.  These results suggest the importance of a proper

quantification of the statistical properties associated to earthquake source models. Such

quantification should go beyond “trial and error” random modeling of the slip and pre-stress

spatial heterogeneity.

In a search for a better model describing the spatial distribution of heterogeneity over the

fault surface, one has to find a model which includes and preserves as many features of the random

or stochastic nature observed in the source models as possible.  Gusev (1992) outlined the

procedure to achieve this goal.  In principle the random model will include one point-statistics

(probability law governing the distribution of the random variables), two-point statistics (correlation

function or spectrum), three-point statistics and so on.  Lavallée and Archuleta (2003) introduced a

random model of slip distribution validated and parameterized by computing the one point-statistics

and two-point statistics associated to the Imperial Valley source model.  For this reason, the results

presented in this paper depart significantly from previous studies in several aspects.  First, the

analysis is performed on non-interpolated data,; the effect of interpolation can be profound. Second,

the probability law of the random variables associated with the slip is non-Gaussian; it is a Lévy law.

As shown in this paper, the usually assumed Gaussian law fails to mimic the basic result found

from the data: namely a Gaussian law does not reproduce the degree of spatial variation in slip



5

amplitude observed on the fault. As such, a Gaussian law leads to less heterogeneity in the slip and

the resulting ground motion. (The differences between the two scenarios are more obvious when

watching the movie of the progression of the rupture —the movie is available at

http://www.crustal.ucsb.edu/~ralph/rupture/.)

Empirical observations of non-Gaussian law of the Lévy type have been reported in

seismology. For instance, analyses of the statistical properties of strong ground motion recorded in

the epicentral areas of large earthquakes demonstrate that the distribution of peak acceleration is

non-Gaussian (Gusev, 1996).  The probability distribution is characterized by a “heavy tail” (a

typical signature of Lévy distribution) and is better approximated by a Cauchy distribution (a special

case of the Lévy distribution) (Tumarkin and Archuleta, 1997). These results suggest that

observation of non-Gaussian distribution in the strong ground motion could have its origin in the

spatial variability of the slip over the fault surface or vice-versa.  Furthermore, Kagan (1994) and

Marsan (2004) have shown that the stress increments caused by a fractal set of earthquakes on

subsequent earthquakes is also distributed according to a Lévy law.

In this paper, we derive the stochastic model for the source models of four earthquakes: the

1979 Imperial Valley, the 1989 Loma Prieta, the 1994 Northridge and 1995 Hyogo-ken Nanbu

(Kobe).  For each inversion model (except Imperial Valley), we consider both the dip and strike slip

distribution.  In each case, we use a one-dimensional stochastic model.  This choice is not the result

of any particular insight or theoretical motivation but is based on pragmatic considerations.  Usually

source models have a larger spatial extension along the strike direction than along the dip direction.

Thus the numbers of events is then larger in the former case, often constraining the statistical

analysis to layers along this direction.  Fortunately, the Northridge inversion is a welcome exception

to this rule, and for this purpose, it is also analyzed but assuming a two-dimensional stochastic

model.  Finally in the appendix, we discuss the procedure adopted in this study, to compute the

parameters of the Lévy law.
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II STOCHASTIC MODEL OF EARTHQUAKE SLIP SPATIAL DISTRIBUTION:

OVERVIEW

In Lavallée and Archuleta (2003), we proposed and tested a model that includes one-point

and two-point statistics for the slip distribution of 1979 Imperial Valley earthquake. The stochastic

model is similar to the fractional Brownian motion (fBm) —see Peitgen and Saupe, 1988; and

Falconer, 1990. One of the procedure used to obtain fBm, consists in generating white noise

distributed according to a Gaussian law over a grid or lattice (of any number of dimensions), and

then to filter the noise in the Fourier space to generate a “stochastic or random process”

characterized by a spectrum with a power law behavior. In Lavallée and Archuleta (2003), we relaxed

the constraint that the random variables had to be distributed according to a Gaussian law and

assumed the most general case of the Lévy, or stable law, (Feller, 1971; Grigoriu, 1995; Nikias and

Shao, 1995; and Uchaikin and Zolotarev, 1999). The underlying idea in adopting this generalization

of fBm is that the probability laws as well as the PDF parameters characterizing the stochastic

model are both fixed by the data.  As we will see in the next sections, assuming that the one-point

statistics are best described by a Gauss law is too restrictive and not very accurate (see also Lavallée

and Archuleta 2003; and Lavallée and Beltrami, 2004).

The Lévy law (also denoted the stable law, Lévy-stable law or the α-stable law in the

literature) is the most general law for which the Central Limit theorem applies —specifically the sum

of (independent and identically distributed —iid) Lévy random variables is also distributed

according to a Lévy law. The Lévy law is characterized by four parameters α , β , γ  and µ . The

parameter α , with 0 < α ≤ 2 , controls the rate of falloff of the tails of the probability density

function. The larger the value of α , the less likely it is to find a random variable far away from the

central location. The case α = 2  corresponds to the Gaussian distribution; the case α = 1  with

β = 0  corresponds to the Cauchy distribution. The parameter β , with −1 ≤ β ≤1 , controls the

departure from symmetry of the PDF curve.  When β = 0 , the PDF is symmetric and centered

about µ . The parameter γ , γ > 0 , is mainly responsible for the PDF width. When α = 2 , the
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parameter γ  is related to the variance σ 2 of the Gaussian distribution by γ = σ 2 2 . The parameter

µ  is the location or shift parameter. When α = 2 , then µ  corresponds to the mean value, and when

α = 1  (with β = 0 ) it corresponds to the location parameter of the Cauchy distribution.  (See also

the Appendix for more details)

The basic difference between a Gaussian distribution and an Lévy distribution can be

illustrated by comparing the distribution of heights with the distribution of annual incomes for

American adult males (Montroll and Shlesinger, 1983). An average individual who seeks someone

twice or three times his height would likely fail. On the other hand, it would not be difficult to find a

person with twice or three time one’s income.  Systems at equilibrium or near the equilibrium are

often devoid of large fluctuation —this is the reason why they remain at equilibrium— and can be

(although not necessary) described by the Gaussian law. However, non-equilibrium system are

characterized by large fluctuations that can be best accounted by a Lévy law. It should not be a

surprise that earthquake slip or pre-stress belongs to the latter because the slip is inferred from

ground motion recordings following a major earthquake —a truly non-equilibrium phenomenon.

There are two assumptions made in the application of this stochastic model to experimental

data.  First, we assume that the Lévy PDF are truncated, indicating that random variables are

bounded between minimum and maximum values.  However, we do assume also that these values

are large enough so that the Central Limit theorem still applies (see Paul and Baschnagel, 1999 and

references therein for a discussion on the validity of the Central Limit theorem for truncated Lévy

random variables; for an interesting discussion of the “unbounded” nature of probability law such

as the Lévy law see the Introduction in Nikias and Shao, 1995).  

A common feature exhibited by “complex data” in seismology (or related disciplines) is the

presence of scaling laws.  Accurate computation of such power law and the range of its validity are

still open to debate. The second hypothesis adopted in this study, is that the scaling law can only be

observed and computed in average.  The scaling law doesn’t have to be observed locally, that is, at a

particular location, over a set of sub-faults or layers of the slip spatial distribution. Local deviations

from the scaling law are expected for a finite —or small enough number— of events. Borrowing
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from the terminology and conceptualization used in statistical physics, we assumed that the scaling

law is “canonical”, i.e. that it can be only properly observed and computed when averaged over

many events. In a canonical description of the statistical properties of a system, the average energy is

conserved, while in a micro-canonical description the energy is exactly preserved everywhere in the

system.  Note also that this requirement is rather typical for processes described by fBm or similar

random processes.  The concept of canonical and micro-canonical descriptions have also been

discussed in the context of another stochastic model called cascade processes (for instance see

Lavallée et al., 1991).

Within these restrictions, the model outlined above can be applied to any data set that is

characterized by a spectrum with a power law behavior (for details see Sections III and IV below)

such as paleoclimatic (Lavallée and Beltrami, 2004).

III ONE-DIMENSIONAL STOCHASTIC MODEL

III a Formulation of the stochastic model

The stochastic model proposed here consists of a convolution in the Fourier space between

the Fourier transform of random variables (white noise) 

€ 

X  and some function with a power law

dependence 

€ 

kx
−ν / 2 where 

€ 

kx  is the horizontal wave number. The scaling exponent 

€ 

ν  measures the

departure from the non-correlated random variable (white noise when 

€ 

ν = 0). This stochastic

process is similar to a fractional Brownian motion that reduces to a random walk in its simplest

manifestation —with 

€ 

ν = 2  and 

€ 

X  a Gaussian random variable (Peitgen and Saupe, 1988; and

Falconer, 1990). In one dimension, the stochastic model 

€ 

Yx  is given by the following relationship:

€ 

Yx ∝ kx /2π
−ν / 2Fs[Xx ]exp[−2πi(x −1)(s−1) /N]

s= 2−N / 2

1+N / 2

∑  , (1)

for a set of random variables 

€ 

Xx  distributed over a one–dimensional lattice of length 

€ 

N , where 

€ 

x  is

the integer spatial variable on the one-dimensional lattice. The discrete variable 

€ 

s is related to 

€ 

kx  by

€ 

kx = 2π (s−1) /N ; 

€ 

Fs[Xx ] is the discrete Fourier transform of the random variables (for 

€ 

s ≤ 0  in Eq.
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(1), the index 

€ 

s = N + s in 

€ 

Fs[Xx ]). We assume that 

€ 

kx
−ν / 2Fs[Xx ]→ 0 at 

€ 

s =1.  According to this

formulation, the power spectrum 

€ 

P(kx )  associated to 

€ 

Yx  will be given by the following relation:

€ 

P kx( ) = Fs[Yx ]
2
∝ kx

−ν  (2)

This equation can be used to compute the values of the parameter 

€ 

ν  associated to 

€ 

Yx .  Using this

scaling exponent the underlying random variables 

€ 

Xx  associated to a stochastic model 

€ 

Yx  can be

computed by using the following relationship:

€ 

Xx ∝Fx
−1[Fs[Yx ]× kx

ν / 2] , (3)

where 

€ 

Fx
−1 is the Fourier inverse.  The one point statistical properties of the stochastic model are

completely specified when the probability law and parameters governing 

€ 

Xx  are identified.  The

probability law controls the variability of the stochastic model while 

€ 

ν  constraints its long-range

correlation.

III b Stochastic modeling of earthquake source models

In this section we discuss the computation of the parameters of the stochastic model for the

dip and strike slips for four earthquakes.  There are several features that distinguish our

computation from the stochastic modeling discussed in Somerville et al., (1999) or Mai and Beroza

(2002). First both have interpolated data before performing their statistical analysis. The

interpolation creates additional correlations in the data and lead to a spurious estimation of the

scaling exponent (for discussion and illustration see Lavallée and Archuleta, 2003). The second

difference is a consequence of the interpolation: their analysis is performed in 2D, a luxury that one

does not have when sticking to the original slip distribution (except for the Northridge source model

that will be considered in the next section). A third difference is that they model the vector sum of

the slip amplitude while we consider both the dip and strike slip amplitudes separately.  There is no

fundamental reason motivating our choice.  However, analyses of the dip and strike slip provide

more data to analyze and to validate the stochastic model. This procedure allows comparing how the

parameters of the stochastic model vary with the direction.  A cursory comparison of the dip and
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strike slip computed for the Imperial Valley earthquake in Archuleta (1984) shows that the

difference between the two can be quite important.  (There is almost no spatial variability in the

inverted dip slip, with most of the sub-faults having zero dip slip.  The absence of many sub-faults

with values different from zero in this data set makes it difficult to derive a reliable estimate of the

PDF, which is why the dip slip is not considered in our study).

The dip and strike slip spatial distributions of the 1989 Loma Prieta, the 1994 Northridge

and 1995 Hyogo-ken Nanbu (Kobe) earthquakes (see Figures 1 to 3), as well as the strike slip of

the 1979 Imperial Valley earthquake (Figure 4), have been analyzed according to the following

procedure.

The power spectrum 

€ 

P(kx )  is computed for each of the horizontal layers illustrated in

Figures 1 to 4. For both, the dip and the strike slip, the mean power spectrum of the horizontal

layers has been computed —see Figures 5a and 5b. For each distribution, the spectrum show that

there are no dominating wave numbers, which suggest that the data cannot be reduced to—or

understood as— a combination of several periodical functions. The curves illustrated in Figures 5a

and 5b show that all the wave numbers contribute to the slip variability but also that the weight of the

wave numbers approximately follows a trend given by a decaying power law. The values of the

scaling exponents 

€ 

ν  are reported in Tables 1 and 2 for the dip and the strike slip distributions,

respectively.

After estimating the parameter 

€ 

ν , each layer of the slip spatial distribution is filtered in the

Fourier space in such a way that the resulting field has a mean power spectrum behavior that follows

a flat curve (white noise).  We assume that the resulting field corresponds to a field of random

variables of magnitude 

€ 

X  and compute the probability density function (PDF) of 

€ 

X .  The (discrete)

PDFs are illustrated in Figures 6 to 12 for both, the dip and strike slip distributions of the four

earthquakes mentioned above.

The final step consists in determining the probability law that will provide the best fit to the

PDFs illustrated in Figures 6 to 12. Three candidates are considered: the Gauss law, the Cauchy law

and the more general Lévy law.  The method to compute the parameters is discussed in the
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Appendix. For each earthquake, the parameters of the best fitting Gaussian, Cauchy and Lévy laws

are listed in Tables 1 and 2.  The curves of the Gaussian, Cauchy and Lévy laws that best fit the

PDF are reported in Figures 6 to 12. For each slip distribution used in this study, the Lévy law

provided the best fit to the PDF.  For almost all of the available slip distributions, the Cauchy law

provides a better fit than the Gauss law except for the dip and strike slip of the Hyogo-ken Nanbu

(Kobe) earthquake.  In Figures 6 to 12, comparison of the tails of the PDF to the tail of the best

fitting Cauchy, Gaussian and Lévy curve confirms that the Lévy law provides a better fit.

In computing the PDF associated with the Imperial Valley slip distribution (see Figure 8),

we purposely choose to compute the PDF for an increment in random variable magnitude

€ 

ΔX (corresponding to the width of the columns in Figure 8) that differs from the one used in

Lavallée and Archuleta (2003).  The motivation for this choice was to get a rough estimate of the

variation in the PDF parameters due to a change in the computed PDF.  In Lavallée and Archuleta

(2003), 

€ 

ΔX  was set to 2.5 but is equal to 3.0 in this paper.  In this paper, we assume that the

probability density function iss symmetric (

€ 

β = 0); so only three parameters were determined.

Comparing the values on the four Lévy parameters for both width increments 2.5 and 3.0, we

obtained respectively values of 0.92 and 1.14 for α , 0.0 and 0.04 for β , 3.75 and 2.75 for γ , and

values of –1.0 and –0.42 for µ .  The order of magnitude of each parameter is similar for both

computations. These numerical computations give an indication of the accuracy of the parameters

values estimated (see also the Appendix for questions related to the accuracy of the estimated

parameters).

For the seven samples under study, we found that the power spectrum behavior can be

approximated by a power law behavior, although the accuracy of this approximation varies from one

sample to another (see the discussion in Figure caption 5). The scaling exponent 

€ 

ν  takes values

between 0.78 and 1.71. For the three earthquakes for which analysis of slip in both the dip and

strike direction were performed, only the Northridge earthquake has a scaling exponent that varies

significantly (see Tables 1 and 2) between the two directions.  This would suggest a higher

correlation in the strike direction.
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There are variations in the values of the Lévy parameters computed for the seven samples

under study. When comparing the values of the parameters 

€ 

α  for the dip and the strike direction of

these tree earthquakes, we found no significant difference. The parameter 

€ 

α  takes values close to 1,

except for Hyogo-ken Nambu earthquake, where the values are around 1.5.  This suggests that the

frequency of large slip events —asperities or large stress drop— decays at a faster pace for this

earthquake when compared to the other three earthquakes. The values taken by the parameter 

€ 

β

indicated significant departure from a symmetric PDF for both slip distributions (along dip and

along strike) of the Loma Prieta earthquake and the strike slip of the Hyogo-ken Nanbu earthquake.

For the Loma Prieta, Hyogo-ken Nanbu and the Northridge earthquakes, the values of the 

€ 

γ

parameters associated to the dip slip are systematically larger that the ones computed for the strike

slip.  For both the dip slip and the strike slip, the values of 

€ 

γ  decay from a maximum for the Loma

Prieta earthquake, followed by the Hyogo-ken Nanbu and the Northridge earthquake. There is no

simple interpretation of the variation in the values of 

€ 

γ  when going from one earthquake to another,

since one or several parameters such as 

€ 

α , 

€ 

β  and 

€ 

ν  are varying significantly from one sample to

another. (It should be noted that the values estimated for the parameter 

€ 

γ  will depend on the

definition adopted for the inverse Fourier transform used in Eq. (3), but this definition will not affect

the values computed for 

€ 

α  and 

€ 

β .) Finally note that for 

€ 

s =1, 

€ 

k = 0 in the convolution given by Eq.

(3).  This implies that the average value of the random variables estimated with Eq. (3) will be zero.

This will affect the values taken by the location parameter 

€ 

µ and suggests that not too much

importance should be granted to the values taken by 

€ 

µ.

Variation in the model parameters from one earthquake to another may suggest dependence

in the fault physical properties.  It may also point to some important difference in the process

governing the propagation of rupture from one earthquake to another.  However, the variation may

also reflect, at least partially, the presence of additional noisy effects and other uncertainties in the

data.  The source models used in this study were computed by using different algorithms.  The

algorithm itself may be a cause for variations in computing the model parameters —for instance due

to the inclusion of interpolation techniques (Liu and Archuleta, 2004) or the directivity effect
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(Sekigushi et al. 2002) in the inversion. Further investigations are needed to reach a definitive

conclusion.  Nevertheless these results also show that the stochastic model described at the

beginning of this section, can be used to compute the one-point and two-points statistics of several

earthquakes.

IV TWO-DIMENSIONAL STOCHASTIC MODEL

IV a Formulation of the stochastic model

In the previous section, we presented the results of our analysis of the statistical properties

of the earthquake source models in term of a one-dimensional stochastic model.  The stochastic

model is based on the assumption that the horizontal layers are statistically independent one from

the other.  This assumption is not completely accurate.  For instance, computation of the 2D Fourier

amplitude of the dip and strike slip of the Northridge earthquake suggests that the 2D Fourier

amplitude is function of the wave number amplitude 

€ 

k = k = kx
2 + ky

2 , with 

€ 

k the 2D wave number

vector; 

€ 

kx  and 

€ 

ky  are horizontal and vertical wave numbers, respectively (see Figure 13). To

investigate the dependence on the wave number amplitude, we can make the assumption that the slip

distribution is isotropic and that the spectrum is only function of 

€ 

k  (see also Mai and Beroza, 2002

for a discussion on this issue).  Conversely, this will imply that the correlation function —i.e. two-

points statistics— is only function of the distance between the two points and not of the direction.

This assumption, as the one discussed in the previous section, can be understood as first order

approximations. Both assumptions are probably too simple to take into full account all the complex

features included in the source model (see Figure 13). However, there is no theoretical model

available for the correlation function of the spatial slip distribution.  Furthermore, empirical

derivation of a more sophisticated functional behavior for the correlation function —or spectrum—

is hardly possible due to the low number of sub-faults computed in source models, The only

available alternative to the assumption that the horizontal layers are statistically independent is the

assumption that the slip distribution is isotropic. In this section, we derive a stochastic model for the
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Northridge slip distribution based on the assumption that the correlation is isotropic. The goal of

this exercise is to be able to appreciate the correctness of the description of the slip magnitude —i.e.

one-point statistic— in term of a Lévy distribution under these two assumptions.  We are also

interested in comparing how the parameter values change as a function of the 1D or 2D description.

The one-dimensional stochastic model discussed in Section IV can be easily generalized to a

two-dimensional isotropic stochastic model by following the procedure used to generalized one-

dimensional fBm to two-dimensional fBm (Peitgen and Saupe, 1988; and Falconer, 1990). In two

dimensions, the stochastic model 

€ 

Yx,y  is given by the following relationship:  

€ 

Yx,y ∝
t= 2−N / 2

1+N / 2

∑ (k /2π )−ν / 2Fs,t[Xx,y ]exp[2πi(x −1)(s−1) /N]
s= 2−N / 2

1+N / 2

∑ exp[2πi(y −1)(t −1) /N] , (4)

for a set of random variables 

€ 

Xx,y  distributed over a two–dimensional square lattice of size 

€ 

N ,

where 

€ 

x  and y are the integer spatial variables on the two-dimensional lattice with the distance

€ 

r = x 2 + y 2 . Both sums in equation (4) go from 1 to 

€ 

N ; the discrete variables 

€ 

s and 

€ 

t  are related

to 

€ 

k  by 

€ 

k = 2π (s−1)2 + (t −1)2 /N ; 

€ 

Fs,t[Xx,y ] is the two-dimensional discrete Fourier transform of

the random variables (for 

€ 

s ≤ 0 , the index 

€ 

s = N + s and for 

€ 

t ≤ 0, the index 

€ 

t = N + t  in 

€ 

Fs,t[Xx,y ]).

According to this formulation, the power spectrum 

€ 

P(k) associated to 

€ 

Yx,y  will be given by the

following relation:

€ 

P k( ) = Fs,t[Yx,y ]
2
∝ k−ν  (5)

As for the one-dimensional stochastic model, after computing the scaling exponent 

€ 

ν  associated to a

stochastic model 

€ 

Yx,y , the random variables 

€ 

Xx,y  can be computed by using the relationship:

€ 

Xx,y ∝Fx,y
−1[Fs,t[Yx,y ]× k

ν / 2] , (6)

where 

€ 

Fx,y
−1 is the two-dimensional Fourier inverse.



15

IV b Stochastic modeling of the 1995 Northridge slip distribution

Assuming an isotropic distribution of heterogeneities, we computed the two-dimensional

spectrum, for the dip —and strike— slip distribution of the Northridge earthquake (Figure 2).  The

behavior of the spectrum is illustrated in Figures 14a and 14b. The values of the scaling exponents

are given in Table 3.  These values are lower than those reported in the literature.  In Somerville et

al. (1999), the spectrum decays approximately with a scaling exponent of –4, while Mai and Beroza

(2002) reported values closed to –3 in a study including many sources models.  In these studies, the

spectrum was computed with interpolated slip distribution.  The interpolation creates additional

correlations in the slip distribution, altering the estimate of the power spectrum and the related

scaling exponent (see Lavallée and Archuleta, 2003 for a discussion).

The spatial distribution of the random variable 

€ 

Xr  is obtained by filtering in 2D (see Eq. 6)

the slip distribution. The (discrete) probability density functions are computed and illustrated in

Figures 16 and 17. Finally the parameters of the Gaussian, Cauchy and Lévy laws that best fit the

PDF are computed following the procedure described in the Appendix. The values of the parameters

are given in Table 3. The discrete PDF as well as the curves of the Gaussian, Cauchy and Lévy laws

that best fit the PDF are illustrated in Figures 15 and 16.

As for the one-dimensional modeling of the Northridge earthquake, the Lévy law provides

the best fit to the computed PDF.  In 1D and 2D, the distribution of the random variables is almost

symmetric (

€ 

β  close to 0).  However, the parameter 

€ 

α  takes larger values when compared to the

values obtained for the one-dimensional modeling of the Northridge earthquake. Nevertheless, these

values are within the range of values reported for all the earthquakes discussed in the previous

section.  This implies that the one-dimensional model predicts extreme large events —such as

asperities— with a higher frequency than the two-dimensional model.  It is difficult to assess the

reason why we observe such a difference.  This may reflect uncertainty in the estimate of the

parameter 

€ 

α  for this data set (see also the Appendix on this question). To get a better estimate of

this parameter, and also to assess the correction of a 1D or 2D stochastic modeling, additional
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investigations are needed.  For instance, one could analyze in parallel the statistical properties of the

source model and the ground motion (see Lavallée and Archuleta, 2004).

Comparison of the values of the parameters 

€ 

γ  and 

€ 

µ obtained from a one-dimensional and

two-dimension modeling is not relevant (as described in the previous section). The value taken by

the parameter 

€ 

γ  depends on the constants used in the definition of Eqs. (1) and (4).  These

constants are not the same and have a different effect on the estimated 

€ 

γ .  

The basic idea behind the filtering is to obtain (idd) random variables (white noise) and

compute the probability law associated with them.  The random noises, computed through the two

filtering processes discussed in this paper, are only approximately independent and identically

distributed.  Nevertheless, comparison of the values of the parameters of the Cauchy, the Gauss and

Lévy laws for the 1D and 2D filtering suggests the range of values that parameters of the Lévy law

can take under these two simple hypothesis.

V DISCUSSION: CONSEQUENCES OF THE LÉVY LAW

The formulation of the slip and pre-stress variability in term of the Lévy random variables

has several interesting consequences.  Random variables governed by a Lévy law are the most

general case for which the Central Limit theorem applies.  According to this theorem, a combination

of (iid) Lévy random variables 

€ 

X1 and 

€ 

X2 will result in a random variable 

€ 

X  that also belongs to a

Lévy law:

€ 

a1X1 + a2X2 =
d
aX + b (7)

where 

€ 

a , 

€ 

a1, and 

€ 

a2 are real constants, 

€ 

b is a real number and the symbol 

€ 

=
d

 stands for equal in

probability distribution —i.e. the random variables 

€ 

a1X1 + a2X2  and 

€ 

aX + b have the same

probability distribution or probability density function.  This implies that the PDF associated with

€ 

X  will differ from the PDF of 

€ 

X1 or 

€ 

X2 by a translation along the horizontal axis and a

multiplicative constant (Uchaikin and Zolotarev, 1999).  This property was called “self-replication”
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in Kagan (1994) since “the sum of random stable [Lévy] variables is itself a stable [Lévy]

variable.”

For any (discrete) location on the grid, Eq. (3) and Eq. (6) can be reduced to a sum of 

€ 

N

(iid) Lévy random variables (weighted by constant).  According to the Central Limit theorem, the

stochastic model 

€ 

Yx  (1D) or 

€ 

Yr  (2D) will have its amplitude distributed according to a Lévy law.

Consequently the slip or pre-stress spatial distribution are also distributed according to a Lévy law,

although the parameters of the Lévy law —

€ 

γ  and 

€ 

µ— will be function of the position.

Consider now the operation of local average (also know as coarse graining) —that consists

in computing average over a space interval smaller than the total length of the grid. This operation

applied to a stochastic model 

€ 

Yt  corresponds to a sum of Lévy random variables (weighted by

different constants).  According to the Central Limit theorem, the amplitude of the resulting field, at

a lower resolution, will be also distributed according to a Lévy law, although again the parameters of

the Lévy law —

€ 

γ  and 

€ 

µ— will be function of the resolution. Source models for different

earthquakes are often computed at different resolutions. To get all the source models at the same

resolution, one can compute local averages over those models with a higher resolution.  The

statistical properties of the slip transformed under such an operation will not be affected. In other

words, a description of the slip statistical properties in terms of the stochastic model discussed

above guaranties that such properties are similar within the scales for which the spectrum power law

behavior remains valid. Computation of the statistical properties of the slip distribution at different

resolutions will become almost intractable if the statistical properties of the slip cannot be

approximated by a Lévy law.  In this case, the statistical properties and in particular the probability

law will depend on the resolution of the slip inversion.

The dependence of the slip distribution statistical properties on the resolution has been

ignored most of the time.  Neglecting this question has consequences worthy of a discussion.

Consider the converse, that the slip or pre-stress spatial variability is distributed according to a non-

Lévy law. For instance let us assume that it is a uniform law.  This is the hypothesis adopted by

several authors to reproduce the pre-stress heterogeneities in modeling of rupture propagation
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(Boore and Joyner, 1978; and Oglesby and Day, 2003).  Under the Central Limit theorem, a sum of

(iid) random variables distributed according to a uniform law converges to a Gauss law.  This

implies that any transformation of a slip spatially distributed according to a uniform law that

involves a sum will lead to a slip that differs significantly, in term of its probability law, from the

original slip.  Examples of such transformations found in the literature include computing the

moving average to smooth the field (Oglesby and Day, 2003) and computing interpolations to get

the field at higher resolution (Somerville et al., 1999; and Mai and Beroza, 2002). The introduction

of a dependency between the slip resolution and the probability law is an artifact created through the

manipulation of the data but there is no reason to believe that the same process happens in nature. A

subsidiary question is, assuming that through kinematic inversion of ground motions one computes

slip variability distributed according to a uniform law at a certain resolution, what kind of probability

law will be found at a higher resolution?  What kind of transformation is required to relate the

probability laws computed at different resolutions?

In seismology, as in geophysics in general, data are collected or inferred at various

resolutions either in time or space. To get a statistical description of the observation where the

description is independent of the resolution imposes constraints on the choice of probability laws

that can be used for such a purpose.  If we don’t want to specify different probability laws at

different resolutions, the properties of the random variables should remain invariant under

mathematical transformations that mimic transformations of data from one resolution to an other.

Because of the Central Limit theorem, the Lévy random variables have these properties.

The stochastic model discussed in this paper can also be used to generate synthetic slip

spatial distribution.  Several algorithms have been developed to generate Lévy random variables

(Chambers et al., 1976; Grigoriu, 1995; and Nikias and Shao, 1995).  Examples of synthetics fields

generated by the stochastic model discussed above and comparisons to real data are discussed in

Lavallée and Archuleta (2003).  Note also, that since an interpolation in the physical space

corresponds to an extrapolation in the Fourier space, the stochastic model can be used to simulate

the spatial distribution of slip at sub-resolution not currently available through kinematic inversion.



19

Accordingly, the stochastic model will allows one to generate many samples of slip spatial

distributions.  Although the samples are characterized by the same model parameters, every sample

will be visually different from the others. This is a consequence of the random nature of the model.

We also think that it is due to the intrinsic random nature of the earthquake process that source

models computed for the same earthquake can be so different from one to another.  (Examples of

different source models for the same earthquake can be found at the following address:

http://seismo.ethz.ch/staff/martin/research/srcmod/srcmod.html; Mai et al., 2003).  For instance,

consider the following experience where several dice are thrown but only the sum is recorded. Let

us assume that, in addition to the number of die, this is the only information made available to the

modelers.  Based on mechanical laws of motions, one can generate simulations of the rolling dice.

For instance if for a pair of dice the observation is seven, then scenarios of rolling dice that provide

final combinations, such as one and six, two and five or three and four, are all legitimate although

quite different solutions.  A similar interpretation may hold for the radiation field generated by the

rupture motions.  Namely, several combinations of asperities distributed over the faults, statistically

equivalent but physically located at different positions, can generate seismic wave radiation that is

similar in term of observations or measurements.

This section will not be complete without discussing the caveats and limitations associated to

the assumptions and approximations underlying the results discussed in this paper. Ground motion

is usually understood has a convolution of source, path and site effects. The effect on the source

inversion of propagation through an uncertain crustal structure is a fundamental but a difficult

question still debated. In principle, uncertainties in the slip distribution can be partially quantified by

comparing the slip distribution computed in different inversions. However, only a few papers have

inverted real data using the same method applied to different velocity models (Ji et al., 2002; Liu and

Archuleta, 2004). One can also argue that the quality of the available data is not sufficient, or that the

number of events is not large enough to achieve a significant description of the statistical properties

of the source model. The discussion given in the Appendix provides answers to these questions.

Also, it should be noted that “lack” of quality or resolution has not prevented the utilization of
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source model in numerical simulations of rupture propagation under heterogeneous conditions

(Beroza and Mikumo, 1996; Olsen et al, 1997; Nielsen and Olsen, 1999; Peyrat et al., 2001; and

Favreau and Archuleta, 2003). We already have mentioned the Fourier analysis of the slip

distribution computed by Somerville et al., (1999) and Mai and Beroza (2002).  Using the same

data, in principle it should be possible to compute the parameters of the probability law with the

same accuracy as the parameters of the correlation functions or Fourier spectrum.

Furthermore, the results reported in Sections III and IV are in good agreement with some

results reported in the literature.  For instance, in many studies of spatial variability of sonic log of

seismic velocity, the computed power spectra decay with a power law behavior characterized by an

exponent taking values between 0.5 and 1.5 (Holliger and Goff, 2003 and references therein).  This

should be compared with the values given in Tables 1 and 2. In studies of the asperities distribution

over the fault, it was observed that such distribution must be described by a power law behavior with

an exponent of 1 (Fakao and Furumoto, 1985) or 2 (Gusev 1989).  The Lévy distribution function

is characterized by a “heavy tail” that follows a power law behavior with exponent 

€ 

α .  The values

of 

€ 

α  given in Tables 1 to 3 are within the previously reported values of 1 and 2. In a subsequent

paper, Gusev (1992) speculates on the Lévy law as a potential candidate to describe the asperity

distribution.  

Also not included in the investigation discussed in this paper is the spatial variation in other

source parameters such as rise time and rupture velocity.  Nor do we consider the effect of the time

evolution of heterogeneity. The study of complexity in geophysics is a very difficult task.  As far as

we know, there are no guidelines or full-proof recipes that will guarantee success in deciphering

complexity into a set of relatively simple models. In devising our strategy to investigate earthquake

complexity, we have decided to try to isolate the effect of slip and pre-stress spatial heterogeneity.  It

is a first step.  Spatial and time variability in other parameters as well as potential coupling effects

between the parameters can be added in future research projects.  
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VI CONCLUSION

In this study, we investigated the variability of sources models computed for four

earthquakes: the 1979 Imperial Valley, the 1989 Loma Prieta, the 1994 Northridge and 1995

Hyogo-ken Nanbu (Kobe). For the four earthquakes, we showed that the average power-spectra of

the raw, i.e., non-interpolated, data follow a power law behavior with scaling exponents with values

less than -4 (see Tables 1, 2 and 3). These results suggest that the slip distributions are much less

correlated than what is commonly found from interpolated data or by assumption, for which the

scaling exponent is approximately –4 for the power spectrum. Equally important is that the PDF for

the slip amplitudes are non-Gaussian. Non-Gaussian laws, of the Lévy type, are characterized by

long probability tails that allow the presence of “extremes”, large values of slip —corresponding to

asperities— with a frequency of occurrence much more important than with a Gaussian law. This

allows for a higher probability of having large slip amplitudes distributed over the fault surface. For

a comparison between synthetic earthquake slips based on random variables distributed according to

a Cauchy law and a Gauss law see Figure 4 in Lavallée and Archuleta 2003.  (The effects on the

rupture propagation can b e  watched o n  a  movie  available at

http://www.crustal.ucsb.edu/~ralph/rupture/.) These results suggest that some features of the slip

heterogeneity are quite general, perhaps “universal,” and thus can be formulated in term of the

stochastic model discussed in this paper.  Five parameters are needed to completely determine the

stochastic model: the four parameters of the Lévy law controlling the frequency of occurrence of the

slip amplitude and a scaling exponent to specify the correlation.

For the Northridge earthquake, we considered two different assumptions regarding the

properties of the spectrum or correlation function.  Although in both cases we observe that the slip

spatial variability can be approximated by Lévy random variables, the parameters of the Lévy law

depend on the assumption and filtering computed to obtain the white noise.  It should be noted

however that the variation in values computed for the Lévy index parameter 

€ 

α  —the parameter

characterizing the fall off of the probability density function for large event— is of the same order
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of magnitude as the variation observed in computing this parameter from generated Lévy random

variables (see the Appendix).  

Another outcome is to confirm the random nature of slip and pre-stress spatial distribution.

The randomness of the source has been postulated in several papers, and in a fewer number of

papers, stochastic models have been inferred and parameterized through comparison with data.

There is a consensus that, as far as earthquakes are concerned, Nature is indeed rolling dice.  In this

paper we have found that it is the case but with one important qualification: the probability law that

governs the dice statistic is a Lévy law.
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FIGURE AND TABLE CAPTIONS

Figure 1:  The fault slip of the 1989 Loma Prieta earthquake obtained through the inversion

of strong motion velocity time history (Steidl et al., 1991).  The slip used in our paper

corresponds to Model 14 discussed in Steidl et al., 1991. The spatial distribution of the slip

was calculated at every 2 km along both the down-dip and the strike directions of the fault

surface.  The spatial variability of the dip slip (a) and the strike slip (b) are illustrated as

colored contours on the fault plane.

Figure 2: The computation of the slip spatial distribution of the 1994 Northridge

earthquake is based on the inversion of strong ground motion data (Liu and Archuleta, 2000

and 2004). The spatial distribution of the slip was calculated every 1.7 km along the down-

dip direction of the fault surface that extends over 24 km, and every 1.76 km along the strike

that extends over 20 km.  The spatial distributions of the dip slip (a) and strike slip (b) are

mapped onto the fault. Contours of the dip and strike slip illustrate the spatial heterogeneity.

Figure 3:  Source inversion of the 1995 Hyogo-ken Nanbu (Kobe) earthquake (Sekiguchi

et al., 2002) based on strong ground records.  The inversion discussed in this paper

included the directivity effect.  The model fault plane is divided in sub-faults located at 2.05

km intervals in both the strike and the dipping directions. The sub-faults are subdivided in

five regions denoted A, B, C, D and E.  In the current paper, we only consider the regions A

to D. The spatial distributions of the dip slip (a) and strike slip (b) are mapped onto the

fault.

Figure 4: A faulting model of the 1979 Imperial Valley earthquake was determined by

comparing synthetic particle velocity with near-source strong ground motion (Archuleta,

1984). The spatial distribution of the slip was calculated at every 1.0 km along the downdip
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direction of the fault surface that extends from the surface to 13 km and at every 2.5 km

along the strike that extends over 35 km.  Only the strike slip was used in this study.

Figure 5: Complex systems observed in nature are often characterized by scaling law —for

instance the Gutenberg-Richter law for earthquake magnitude (Gutenberg and Richter,

1942), roughness of sliding surface (Power et al., 1987) and turbulence (Frisch, 1995). In

this paper we investigate the scaling properties associated with dip slip (a) and the strike slip

(b) reported in Figures 1 to 4. For each earthquake, the mean power spectrum 

€ 

P(kx )  of the

horizontal layers has been computed as a function of the wave number 

€ 

kx .  The mean power

spectrum 

€ 

P(kx )  and the best straight line that fits the log-log curve are reported for the slip

distributions of the Hyogo-ken Nanbu (hollow black triangle ), the Imperial Valley (green

cross ×), the Loma Prieta (hollow blue square ) and the Northridge (hollow red diamond

◊) earthquakes. These results suggest that the scaling behavior is observed for scale length

that ranges from 2 to 64 km. The values of the scaling exponents are reported in Tables 1

and 2. The quality of the fitted curves illustrated in (a), as estimated by the values of the

linear correlation coefficient (in absolute values), goes from average (0.84 for Loma Prieta)

to good (0.94 for Hyogo-ken Nanbu and Northridge).  In (b), it goes from poor (0.63 for

Imperial Valley), to average (0.85 for Loma Prieta) to good (0.94 for Northridge and 0.96

for Hyogo-ken Nanbu). Fluctuations around the power law behavior can be attributed to a

slow convergence to the theoretical curve.  The presence of noise (not taken into account by

the stochastic model) as well as uncertainties in computing the slip spatial distribution or in

recording the ground motions also impinge on the computation of the power spectrum and

can be responsible for the departure observed in the plots.

Figure 6: (a) The (discrete) probability density function PDF (red and blue dots and bars)

associated to the filtered dip slip 

€ 

X  of the Hyogo-ken Nanbu (Kobe) earthquake is

compared to the curves of the three probability laws that best fit the PDF: the Cauchy law
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(black curve), the Gaussian law (dashed curve) and the Lévy law (green curve).  The left side

of the PDF (

€ 

X < 0) is colored in red while the right (

€ 

X > 0) side is in blue. The magnitude

of the random variables is given by 

€ 

X . The width of the bar corresponding to the increment

used to estimate the PDF is 3.5. (b) The left tails of the same curves are illustrated on a log-

log plot. (c) The right tails of the curves in (a) are illustrated on a log-log plot. Lévy and

Cauchy probability density function are characterized by tails that decay according to a

power law.  Such behavior is best illustrated on a log-log plot. The misfit of the Gaussian

probability density function is more obvious in these plots —see Figures (b) and (c). In

particular, note that according to the Gauss law, the large events —last points on the right

hand side of the graphics— have almost a zero probability of being observed. The

parameters of the Gauss, Cauchy and Lévy laws are reported in Table 1.

Figure 7: Same as Figure 6 but for the random variables associated to the strike slip of the

Hyogo-ken Nanbu (Kobe) earthquake. The width of the bar corresponding to the increment

used to estimate the PDF is 4.  For this case, the shape of the PDF illustrated in (a) is

asymmetric with respect to its maximum and best fitted by an asymmetric Lévy law with

parameter 

€ 

β ≠ 0 (see also the Appendix).  The probability density functions associated with

Cauchy and Gauss laws are both characterized by curves symmetric with respect to its

maximum.  For this reason, the curves of the Cauchy and Gauss laws “overshoot” the

extreme events of the computed PDF left tail illustrated in (b).  However in (c), we observe

that the Gauss law fails to fit the large events. The parameters of the Gauss, Cauchy and

Lévy laws are reported in Table 2.

Figure 8: Same as Figure 6 but for the random variables associated with the strike slip of

the Imperial Valley earthquake. The width of the bar corresponding to the increment used to

estimate the PDF is 3.  The remarks discussed in the Figure caption 6 also apply for this
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case (see also Lavallée and Archuleta, 2003) The parameters of the Gauss, Cauchy and Lévy

laws are reported in Table 2.

Figure 9: Same as Figure 6 but for the random variables associated with the dip slip of the

Loma Prieta earthquake. The width of the bar corresponding to the increment used to

estimate the PDF is equaled to 10.  The remarks discussed in the Figure caption 7 for an

asymmetric PDF also apply for this case except that here in the Gauss law is actually

providing a good fit to the PDF left tail (b) but completely missed the PDF right tail (c).  

The parameters of the Gauss, Cauchy and Lévy laws are reported in Table 1.

Figure 10: Same as Figure 6 but for the random variables associated with the strike slip of

the Loma Prieta earthquake. The width of the bar corresponding to the increment used to

estimate the PDF is 10.  The remarks discussed in the Figure caption 9 for an asymmetric

PDF also apply for this case. The parameters of the Gauss, Cauchy and Lévy laws are

reported in Table 2.

Figure 11: Same as Figure 6 but for the random variables associated with the dip slip of the

Northridge earthquake. The width of the bar corresponding to the increment used to

estimate the PDF is 7. The remarks discussed in the Figure caption 6 also apply for this

case. The parameters of the Gauss, Cauchy and Lévy laws are reported in Table 1.

Figure 12: Same as Figure 6 but for the random variables associated with the strike slip of

the Northridge earthquake. The width of the bar corresponding to the increment used to

estimate the PDF is 4. The remarks discussed in the Figure caption 6 also apply for this

case. The curve associated to the Lévy law underestimate the maximum of the PDF but

provides a better fit to the other PDF values. The parameters of the Gauss, Cauchy and Lévy

laws are reported in Table 2.
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Figure 13: Contour plot of the complex behavior of the Fourier amplitude of the dip (a) and

strike (b) slip in the wave number space.  The Fourier amplitude is function of the horizontal

and vertical wave numbers, respectively 

€ 

kx  and 

€ 

ky . The large and low values of the Fourier

amplitude are in red and blue, respectively. However in (b), contour lines are distributed

almost horizontally in a region close to 

€ 

ky = 0 , indicating higher correlation along this

direction.  This suggests that the approximation of the strike slip in term of a one-

dimensional stochastic model is more appropriate in this case (see Section III).  

Figure 14: The 2D power spectrum 

€ 

P(k) has been computed assuming that the dip and

strike slip spatial distributions are isotropic. The square of the Fourier amplitude has been

estimated. The results were integrated over a (approximated) circle of radius 

€ 

k  with

€ 

k = kx
2 + ky

2 . The 2D power spectrum 

€ 

P(k) and the best straight line that fits the log-log

curve are reported for the dip slip distributions (hollow black triangle ), and the strike slip

distribution (hollow blue square ). These results suggest that the scaling behavior is

observed for a scale length ranging from 4 to 20 km. The values of the scaling exponents

are reported in Table 3.  The linear correlation coefficient (in absolute values) takes a value

of 0.71 for the dip slip and 0.9 for the strike slip.

Figure 15: Same as Figure 6 but for the random variables associated with the 2D filtering

of the dip slip of the Northridge earthquake. The width of the bar corresponding to the

increment used to estimate the PDF is 8. The remarks discussed in the Figure caption 6 also

apply for this case. The parameters of the Gauss, Cauchy and Lévy laws are reported in

Table 3.
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Figure 16: Same as Figure 6 but for the random variables associated with the 2D filtering

of the dip slip of the Northridge earthquake. The width of the bar corresponding to the

increment used to estimate the PDF is 8. The remarks given in the Figure caption 6 also

apply for right tail of the curves in (c). There are not enough points to appreciate the fit of

for the left tail of the curves in (b). The parameters of the Gauss, Cauchy and Lévy laws are

reported in Table 3.

Figure A1: Curves of the Lévy probability density function 

€ 

p z;α,β,γ,µ( )  for several values

of the parameter 

€ 

α : (a) the overall probability density function and (b) the tails of the

probability density function. The parameter 

€ 

α  is called the Lévy exponent, the characteristic

or stable exponent.  It controls the rate of fall off of the probability density function as

illustrated in (b). Note that by keeping the values of other parameters fixed, the probability

to observe random variables with large values increases as 

€ 

α  decreases.

Figure A2: Curves of the Lévy probability density function 

€ 

p z;α,β,γ,µ( )  for several values

of the parameter 

€ 

β . The parameter 

€ 

β  is called the symmetric or the skewness parameter.  It

controls departure from symmetry given by 

€ 

β = 0. Note that for 

€ 

β > 0, large positive

random variables are more likely to be generated.  The converse is true for 

€ 

β < 0 since

€ 

p z;α,β,γ,µ( ) = p −z;α,−β,γ,µ( ) .

Figure A3: Curves of the Lévy probability density function 

€ 

p z;α,β,γ,µ( )  for several values

of the parameter 

€ 

γ . The parameter 

€ 

γ  is called the scale parameter or dispersion.  It controls

the width of the probability density function.



34

Figure A4: Curves of the Lévy probability density function 

€ 

p z;α,β,γ,µ( )  for several values

of the parameter 

€ 

µ. The parameter 

€ 

µ, with 

€ 

−∞ < µ <∞  is called the location parameter. It

shifts the curve to the left or the right.

TABLES

Table 1: Parameters of the stochastic model for the dip slip of three earthquakes.  The parameter 

€ 

ν

is the scaling exponent of the power spectrum (Figure 3). The parameters of the Gauss, Cauchy and

Lévy laws that best fit the 

€ 

PDF(X)  in Figures 6, 9 and 11 are given.

Scaling
Exponent

Gauss law Cauchy law Lévy law

ν µ σ γ µ α β γ µ
1989 Loma Prieta 0.94 -8.5 22. 16.4 -10.2 1.31 0.84 34.5 14.3
1994 Northridge 1.18 -1.52 13.9 9.7 -1.13 1.34 -0.05 21.3 -2.2

1995 Hyogo-ken Nanbu 1.47 0.63 9.91 7.3 1.2 1.50 -0.2 18.2 0.2

Table 2: Parameters of the stochastic model for the strike slip of the four earthquakes.  The

parameter 

€ 

ν  is the scaling exponent of the power spectrum (Figure 3). The parameters of the Gauss,

Cauchy and Lévy laws that best fit the 

€ 

PDF(X)  in Figures 7, 8, 10 and 12 are given.

Scaling
Exponent

Gauss law Cauchy law Lévy law

ν µ σ γ µ α β γ µ
1979 Imperial Valley 0.78 -0.73 4.55 3.3 -0.47 1.14 -0.04 3.75 -1.0

1989 Loma Prieta 1.07 -5.5 19. 13.5. -8.3 1.07 0.6 15.2 63.7
1994 Northridge 1.71 -0.1 6.3 4.29 -0.56 1.17 0.07 6.41 1.1

1995 Hyogo-ken Nanbu 1.48 -2.2 6.4 4.8 -2.6 1.56 0.85 9.8 0.05
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Table 3: Parameters of the 2D stochastic model for the dip and strike slip of the Northridge

earthquake.  The parameter 

€ 

ν  is the scaling exponent of the power spectrum (Figure 14). The

parameters of the Gauss, Cauchy and Lévy laws that best fit the 

€ 

PDF(X)  in Figures 15 and 16 are

given.

Scaling
Exponent

Gauss law Cauchy law Lévy law

ν µ σ γ µ α β γ µ
1994 Northridge dip slip 0.74 -3.8 13.1 10.1 -3.32 1.51 0.2 28.3 -0.9
1994 Northridge strike

slip
1.05 1.4 8. 6.1 1.1 1.50 0.2 13.8 2.1

Table A1: Summary of the values obtained for the parameters of the Cauchy, Gauss and Lévy law.

The last column reports the values computed for the objective functions given in Eq. (A6).  Note

that, although we report the values for Eq. (A6) in the sixth line, the parameters reported in these

lines where computed by optimizing Eq. (A7).  The second line includes the values of the Gauss

parameters used to generate the random variables with an algorithm provided with Mathematica.

Fitted functions α β γ µ Minimum of the objective
function in Eq. (A6)

Original values 2 — 2 0. Does not apply

€ 

p x;2,β,γ,µ( )  (Gauss) — — 2.1 0.07 0.154

€ 

p x;1,0,γ,µ( )  (Cauchy) — — 1.51 -0.06 0.338

€ 

ϕA (k;α,γ) 2 — 2.09 — Does not apply

€ 

ϕ(k;α,β,γ,µ) 1.99 1.0 2.08 0.05 0.155

€ 

p x;α,β,γ,µ( ) 1.91 0.45 1.99 0.06 0.148

Table A2: Same as Table A1.  The second line includes the values of the Cauchy parameters used

to generate the random variables with an algorithm provided with Mathematica.

Fitted functions α β γ µ Minimum of the objective
function Eq. (A6)

Original values 1 — 1 0 Does not apply

€ 

p x;2,β,γ,µ( )  (Gauss) — — 0.84 0.02 0.379

€ 

p x;1,0,γ,µ( )  (Cauchy) — — 0.97 -0.07 0.226

€ 

ϕA (k;α,γ) 1.16 — 0.89 — Does not apply

€ 

ϕ(k;α,β,γ,µ) 1.15 0.26 0.88 0.93 0.216

€ 

p x;α,β,γ,µ( ) 1.04 0.04 0.95 0.45 0.184
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Table A3: Same as Table A1.  The second line includes the values of the Lévy parameters used to

generate the random variables with an algorithm discussed in Chambers et al. (1976).

Fitted functions α β γ µ Minimum of the objective
function Eq. (A6)

Original values 1.5 1 1 0 Does not apply

€ 

p x;2,β,γ,µ( )  (Gauss) — — 1.95 -1.17 0.281

€ 

p x;1,0,γ,µ( )  (Cauchy) — — 1.56 -1.32 0.35

€ 

ϕA (k;α,γ) 1.59 — 1.51 — Does not apply

€ 

ϕ(k;α,β,γ,µ) 1.59 1. 1.56 -0.31 0.222

€ 

p x;α,β,γ,µ( ) 1.47 1. 1.60 0.22 0.204

Table A4: Same as Table A1.  The second line includes the values of the Lévy parameters used to

generate the random variables with an algorithm discussed in Nikias and Shao (1995).

Fitted functions α β γ µ Minimum of the objective
function Eq. (A6)

Original values 1.5 1 1 0 Does not apply

€ 

p x;2,β,γ,µ( )  (Gauss) — — 0.7 -0.73 0.384

€ 

p x;1,0,γ,µ( )  (Cauchy) — — 0.88 -0.87 0.375

€ 

ϕA (k;α,γ) 1.25 — 0.73 — Does not apply

€ 

ϕ(k;α,β,γ,µ) 1.26 0.92 0.74 0.81 0.222

€ 

p x;α,β,γ,µ( ) 1.25 0.67 0.74 0.45 0.19

Table A5: Same as Table A4.

Fitted functions α β γ µ Minimum of the objective
function Eq. (A6)

Original values 1.25 0 1 0 Does not apply

€ 

p x;2,β,γ,µ( )  (Gauss) — — 1.18 -0.17 0.274

€ 

p x;1,0,γ,µ( )  (Cauchy) — — 1.14 -0.18 0.262

€ 

ϕA (k;α,γ) 1.45 — 1.18 — Does not apply

€ 

ϕ(k;α,β,γ,µ) 1.46 0.47 1.18 0.4 0.191

€ 

p x;α,β,γ,µ( ) 1.53 0.4 1.29 0.35 0.168
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Table A6: Same as Table A4.

Fitted functions α β γ µ Minimum of the objective
function Eq. (A6)

Original values 0.8 0 1 0 Does not apply

€ 

p x;2,β,γ,µ( )  (Gauss) — — 0.94 -0.13 0.597

€ 

p x;1,0,γ,µ( )  (Cauchy) — — 0.96 -0.13 0.303

€ 

ϕA (k;α,γ) 0.84 — 0.99 — Does not apply

€ 

ϕ(k;α,β,γ,µ) 0.85 -0.14 1.0 0.48 0.301

€ 

p x;α,β,γ,µ( ) 0.87 -0.13 0.96 0.38 0.263

Table A7: Same as Table A4.

Fitted functions α β γ µ Minimum of the objective
function Eq. (A6)

Original values 1.72 0.5 1 0 Does not apply

€ 

p x;2,β,γ,µ( )  (Gauss) — — 1.2 -0.19 0.242

€ 

p x;1,0,γ,µ( )  (Cauchy) — — 1.18 -0.36 0.413

€ 

ϕA (k;α,γ) 1.65 — 1.1 — Does not apply

€ 

ϕ(k;α,β,γ,µ) 1.68 1.0 1.1 0.3 0.181

€ 

p x;α,β,γ,µ( ) 1.62 0.93 1.16 0.4 0.172

Table A8: Same as Table A1 but for the random variables associated to the dip slip of the

Northridge earthquake.

Fitted functions α β γ µ Minimum of the objective
function Eq. (A6)

€ 

p x;2,β,γ,µ( )  (Gauss) — — 96.45 --1.53 0.0321

€ 

p x;1,0,γ,µ( )  (Cauchy) — — 9.69 -1.13 0.0229

€ 

ϕA (k;α,γ) 1.34 — 21.12 — Does not apply

€ 

ϕ(k;α,β,γ,µ) 1.31 -0.1 19.33 -3.57 0.0227

€ 

p x;α,β,γ,µ( ) 1.34 -0.05 21.28 -2.16 0.0223
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APPENDIX A:  ON THE ESTIMATE (DETERMINATION) OF THE PARAMETERS

OF THE LÉVY LAW

In this appendix we discuss the procedure used to estimate the Lévy parameters associated to

a set of random variables.  We also presents the results obtained when using this procedure on Lévy

random variables generated with the proper algorithms.  But first we have to introduce the

mathematical formulation of the probability density function and characteristic function for the Lévy

law (detailed discussions can be found in the literature: Feller, 1971; Grigoriu, 1995; Nikias and

Shao, 1995; and Uchaikin and Zolotarev, 1999)

Usually the Lévy probability density function 

€ 

p z;α,β,γ,µ( )  is given by the Fourier

transform of the characteristic function 

€ 

ϕ k;α,β,γ,µ( ) :

€ 

p z;α,β,γ,µ( ) = 2π( )−1 exp −ikz( )
−∞

∞

∫ ϕ k;α,β,γ,µ( )dk (A1)

with the functional behavior of the characteristic function given by the following expression:

€ 

ϕ(k;α,β,γ,µ) = exp[γ(ikµ − k α
+ ikω(k;α,β))] (A2)

and with

€ 

ω(k;α,β) =
k α−1

β tan(απ /2)
−β(2 /π )ln k

 
 
 

  
(A3)

The four parameters α , β , γ  and µ  are limited to a domain of values defined by:

€ 

0 <α ≤ 2, 

€ 

−1≤ β ≤1, 

€ 

γ > 0 , and 

€ 

−∞ < µ <∞ (A4)

(see also Section II for a discussion on the parameters; Figures A1 to A4 illustrate the functional

behavior of 

€ 

p z;α,β,γ,µ( )  for different values of the parameters).  Note that the representation of the

characteristic function is not unique, other forms have been postulated (for a discussion see

Uchaikin and Zolotarev, 1999).  Traditional literatures on the Lévy law claim that there are only

several cases for which the functional behavior of 

€ 

p z;α,β,γ,µ( )  can be expressed in terms of known
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functions.  They are the Gauss law for 

€ 

α = 2 , the Lévy law for 

€ 

α =1 and β = 0 , and the half-normal

law (sometime referred as the Lévy law) for 

€ 

α =1 2 and 

€ 

β =1.  This statement is not accurate

anymore since analytical expressions of 

€ 

p z;α,β,γ,µ( )  have been found for some values of the

parameters α , β , γ  and µ  in terms of generalized hypergeometric functions and Meijer’s G

functions (see Hoffman-Jorgensen, 1993; Zolatorev, 1995; and Uchaikin and Zolotarev, 1999).

Furthermore, using Mathematica, it is also possible to compute an analytical expression of the

integral in Eq. (A1).  For instance for 

€ 

α = 3 2 and 

€ 

β = 0, the following expression is computed:

€ 

1
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(A5)

where 

€ 

p Fq  is the generalized hypergeometric function (for details see Gradshteyn and Ryzhik,

1994). However for numerical computation, this analytical representation in term of hypergeometric

functions is rather cumbersome and not really useful.  First, the analytical form does not exist for all

values of the parameters α , β , γ  and µ ; and when it exists, the integral can be very long to

compute as can be the compilation of the hypergeometric functions.  For all the results discussed in

this paper, the integral in Eq. (A1) was computed numerically using the algorithm NIntegral in

Mathematica.

In principle, for a given set of discrete values of the probability density function 

€ 

PDF Xi( ) ,

one can compute the values of the parameters of the Lévy law that minimize the following

expression

€ 

PDF(Xi) − p Xi;α,β,γ,µ( )
i=1

N

∑ (A6)

under the constraints given in Eq. (A4). In Eq. (A6), 

€ 

Xi  is the 

€ 

ith  random value and 

€ 

N  the number

of random variables. For this purpose, we used the optimization algorithm NMinimize provided in
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Mathematica. This new optimization algorithm includes several methods for global optimization:

genetic programming, nonlinear simplex algorithm and simulated annealing (Wolfram, 2003;

additional details are available on the web at http://documents.wolfram.com/v5/Built-

inFunctions/NumericalComputation/Optimization/AdvancedDocumentation/NMinimize.html).  The

expression in Eq. (A6) is computed by using the three methods. Comparing the results obtained by

the different methods ensure a better and robust minimization of the expression in Eq. (A6). The

results reported in this paper are those corresponding to the method that provides the lowest estimate

of Eq. (A6). Also comparing the parameter values through different methods allows the inference of

a “margin of error” in the parameter values when such values differ from one method to another.

However this procedure is expensive in computer time.  This is partially due to the number of

parameters to be fit, the constraints in Eq. (A4) and the numerical integration of Eq. (A1).

Furthermore, optimization algorithms require initial values for the parameter to be fit. The choice of

the initial values also affects the duration of the compilation —and sometimes finding an optimal

solution. To achieve a faster computation, and hopefully a more robust compilation of the parameter

values, we have devised an iterative procedure allowing a better choice for the initial values to be fed

in the algorithm NMinimize.

First it should be noted that as an alternative to optimizing Eq. (A5), one can rather, or

additionally, optimize an objective function based on the characteristic function (Grigoriu, 1995 and

reference therein):

€ 

ϕ k;α,β,γ,µ( ) −ϕk
k
∑ (A7)

The characteristic function 

€ 

ϕk , associated to the random variables 

€ 

X , is computed by estimating the

following expression:

€ 

ϕk = Exp(ikX) (A8)

where 

€ 

k  is the wave number and 

€ 

f  is the expected (or mean) values of 

€ 

f . The characteristic

function 

€ 

ϕk  is well located in the wave number space and almost zero outside a finite interval of 

€ 

k

values.  However, the values of 

€ 

k  used to compute 

€ 

ϕk  in Eq. (A8) have to be chosen carefully,
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especially large values of 

€ 

k  since accurate compilation of 

€ 

ϕk  is more difficult to achieve as the value

of 

€ 

k  increases.  (Note that these values are independent of the values used in the power spectrum

analysis discussed earlier in this paper.)  One can also observe that the absolute value of the

characteristic function given by Eq. (A2) is only specified by two parameters (see Uchaikin and

Zolotarev, 1999):

€ 

ϕA (k;α,γ) = ϕ(k;α,β,γ,µ) = exp[−γ k α ] (A9)

and that an objective function associated with 

€ 

ϕA (k;α,γ) can be computed and optimized to

determine the values of the parameters 

€ 

α  and 

€ 

γ .  The objective function to be optimized is given by

the following expression:

€ 

ϕA k;α,γ( ) − ϕk
k
∑ (A10)

The procedure used to estimate the parameters of the Lévy law can be summarized by the

following steps:

1- Compute the parameters γ  and µ  that optimize expression (A6) for a Gauss and a Cauchy

law.  In this computation, we use the well-known analytical expressions for the Gauss

€ 

p z;2,0,γ,µ( )  and Cauchy 

€ 

p z;1,0,γ,µ( )  probability density functions.

2- Compute the parameters α  and γ that optimize expression (A10).  For this purpose, we use

as initial values for α  and γ the values obtained in the first step, either the Gauss or Cauchy

parameters depending which one provide the lowest value for the objective function in

expression (A6).

3- Compute the parameters α , β , γ  and µ  that optimize expression (A7). We use as α , β , γ

and µ  initial values the values computed in the second step and the first step.

4- Compute the parameters α , β , γ  and µ  that optimize expression (A6).  We use as initial

values for the parameters to be determined those obtained in the third step.

Note that intermediary steps can be added to this procedure.  For instance, in steps 3 or 4, one can

use the value of α  and γ found in the second step and optimize expressions (A6) or/and A7 to only
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fit the parameters β  and µ .  If the computer is too slow, one can consider replacing step 4 by this

variation.  Note also that to provide robust results, it is better to perform the computation for

different sets of initial values of the parameters.  This will also ensure (as much as possible) that the

optimization compilation is not trapped in a local minimum.  For the three last steps, we used the

Mathematica algorithm NMinimize for all the results presented in this paper, with the three methods

for global optimization: genetic programming, nonlinear simplex algorithm and simulated annealing.

For the first step, we either use NMinimize or NonlinearRegress.

To assert its soundness, the procedure to compute the Lévy parameters has to be tested.

Furthermore, the procedure has to be tested under conditions that are as close as possible to the

conditions used to compute the Lévy parameters associated with the slip distribution.  For this

purpose, we have generated two hundred Lévy random variables using the algorithms discussed in

Chambers et al., (1976) —see also Grigoriu (1995)— and Nikias and Shao (1995) with different

values for the parameters α , β , γ  and µ . (These algorithms should be used carefully, since

depending on the seed and the number of random variables generated; convergence toward the

theoretical distribution is not automatic.) The number of random variables was chosen to match

roughly the number of events (sub-faults) used in the analysis of the slip spatial distributions: 144

(Loma Prieta), 180 (Northridge), 196 (Imperial Valley) and 280 (Hyogo ken Nanbu —Kobe).  The

probability density function and the characteristic function —see Eq. (A8)— associated with these

random variables have been computed. Then the procedure discussed above was used to compute

the best-fitting values for the parameters α , β , γ  and µ .  Comparison between the best-fitting

values computed at each iteration and the original values used to generate the random variables are

presented in Tables A1 to A7.  In Tables A3 and A4, the values of the parameters are identical but

the algorithm used to generate the Lévy random variables is different: the algorithm of Chambers et

al., (1976) in Table A3 and the algorithm given in Nikias and Shao (1995) in Table A4.  These

results indicate the order of accuracy that can be expected for the parameters when considering two

different samples of two hundred (iid) Lévy random variables.
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The tests done using the procedure outlined above allow us to draw some conclusions.  In

general, the values for the parameters 

€ 

γ  and 

€ 

µ, that respectively characterized the dispersion and

location of the probability density function, are well estimated in term of their order of magnitude.

This conclusion holds independently of the law or method used to estimate the parameters. For most

of the studies, the procedure provides accurate values of the parameter α  as long as the values of α

are not too low.  (For a set of two hundred variables, it is more difficult to approximate the

theoretical behavior of the probability density function when 

€ 

α ≈ 0.7 or smaller.) Of all the four

parameters, β  is the parameter estimated with the least accuracy, although the parity is usually well

resolved.  The asymmetry or symmetry of the probability density function curves is not well

resolved for the number of random variables used in these tests.

The question of how many random variables are needed to get an accurate estimate of the

PDF and of the PDF parameters is beyond the scope of this paper.  What we want to establish in

this Appendix, is that given a number of random variables similar to those used in computing the

stochastic model of the slip distribution and using a similar procedure, is it possible to discriminate

between a Gaussian (

€ 

α = 2), a Cauchy noise (

€ 

α =1, 

€ 

β = 0) and a Lévy noise with a stable parameter

value 

€ 

α  not too close to 1 or 2?   The study suggests that the parameter 

€ 

α  can be estimated with an

approximation of roughly ±0.3 (see Tables A4 and A5).  This precision is for generated (iid)

random variables.  For random noise obtained through the filtering of the slip distribution, the

uncertainty is surely larger although not easily quantified.  These results suggest that the uncertainty

on the values of the parameter α  reported in Tables 1 to 3 is at least of the order of ±0.3.  Within

this margin of error, it is possible to distinguish between a Cauchy (

€ 

α =1) and a Gaussian (

€ 

α = 2)

random law.  For the sake of comparison, with results presented in Tables 1 to 7, we present in

Table A8 the results of the procedure outlined above for the dip slip of the Northridge earthquake

illustrated in Figure 11.

Finally, the computed values for the parameters of the Cauchy, Gauss and Lévy laws depend

to a certain extent on the size of the increment 

€ 

ΔX  used to compute the 

€ 

PDF(X) . However

numerical compilations of the parameters of the Cauchy, Gauss and Lévy laws for a reasonable
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choice of 

€ 

ΔX  show that there is no significant change in the parameter values.  For instance the

values presented in Table 8 has been computed for 

€ 

ΔX = 7 (see Figure 11).  Using a 

€ 

ΔX = 8  to

compute the 

€ 

PDF(X) , we obtain that the Gauss law is best fit for 

€ 

γ = 96.14  and 

€ 

µ = −1.55 ; the

Cauchy law is best fit for 

€ 

γ =10.35  and 

€ 

µ = −1.72 ; and the Lévy law is best fit for 

€ 

α =1.28 ,

€ 

β = 0.14 , 

€ 

γ =18.34  and 

€ 

µ = 0.76 .  These values are in good agreement with those reported in Table

8. That is, the results presented in Tables 1 to 3, indicating that the Lévy law provides a better fit, are

not an artifact that can be eliminated by choosing another reasonable value for 

€ 

ΔX . By reasonable

value of 

€ 

ΔXwe mean a value as small as possible —to get as many points as possible to fit the three

probability laws— but large enough to reproduce the regular smooth shape associated to a

probability density function. There is not optimal way to make such a choice, and it may be possible

to get better results by using a variable 

€ 

ΔX . For 

€ 

N  random variables 

€ 

Xi  we perform the following

comparison to insure a reasonable choice of 

€ 

ΔX .  First we computed the mean directly from the

data, using 

€ 

1/N( ) Xi
i=1

N

∑ , and compare to the mean computed with

€ 

PDF(Xi) Xi
i=1

N

∑ , using the

computed 

€ 

PDF(X)  at a given 

€ 

ΔX .  Than we computed the moment of second order directly from

the data, using 

€ 

1/N( ) Xi
2

i=1

N

∑ , and compared with the moment of second order computed

with

€ 

PDF(Xi) Xi
2

i=1

N

∑ .  The increment 

€ 

ΔX  is chosen in such a way that both comparisons give

similar values for the mean and the moment of second order.




